The Fourth-Order Dispersive Nonlinear Schrödinger Equation: Orbital Stability of a Standing Wave

نویسندگان

  • Fábio Natali
  • Ademir Pastor
چکیده

Considered in this report is the one-dimensional fourth-order dispersive cubic nonlinear Schrödinger equation with mixed dispersion. Orbital stability, in the energy space, of a particular standing-wave solution is proved in the context of Hamiltonian systems. The main result is established by constructing a suitable Lyapunov function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness and standing waves for the fourth-order non-linear Schrödinger-type equation

We consider the initial value problem for the fourth-order non-linear Schrödinger-type equation (4NLS) which describes the motion of an isolated vortex filament. In the first part of this note we review some recent results on the time local well-posedness of (4NLS) and give the alternative proof of those results. In the second part of this note we consider the stability of a standing wave solut...

متن کامل

Orbital Stability of Standing Wave Solution for a Quasilinear Schrödinger Equation

Via minimization arguments and the Concentration Compactness Principle, we prove the orbital stability of standing wave solutions for a class of quasilinear Schrödinger equation arising from physics.

متن کامل

An exponential time differencing method for the nonlinear Schrödinger equation

The spectral methods offer very high spatial resolution for a wide range of nonlinear wave equations, so, for the best computational efficiency, it should be desirable to use also high order methods in time but without very strict restrictions on the step size by reason of numerical stability. In this paper we study the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method; thi...

متن کامل

Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation

In this paper, we study numerically the existence and stability of some special solutions of the nonlinear beam equation: utt +uxxxx +u− |u|p−1u = 0 when p = 3 and p = 5. First we show the existence and the orbital stability of the standing wave solutions: u(x, t) = eφω(x). Next, we study the existence and linear stability of the traveling wave solutions: u(x, t) = φ(x + ct). For both types of ...

متن کامل

STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.

Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015